Homework 4

Figure P4.1.7-4

CW:-5 + 0 + 5 - V_{Th} = 0, which gives V_{Th} = 0.

To determine R_{Th} , the sources are set to zero. The 10 Ω resistor on the left is short-circuited, leaving the remaining resistors in series. It follows that $R_{Th} = 25 \Omega$.

P4.1.21 Connect a resistor R_L between terminals 'ab' in Figure P4.1.21 and show that the voltage V_{ab} is independent of R_L . Deduce that TEC looking into terminals 'ab' is an ideal voltage source. Verify this deduction by determining V_{Th} and R_{Th} looking into terminals 'ab'.

Solution: $V_{cb} = I_X \vee, V_{ac} = I_X \vee, I_{ac} = I_X \wedge$, and current through 12 \vee source is zero, it follows that $V_{cb} = I_X \vee = 12 \vee, V_{ab} = 12 \vee$ $2I_X \vee = 24 \vee$, independently of R_L , Hence, $V_{Th} = 24 \vee, R_{Th} = 0$.

> On opencircuit $V_{cb} = 12$ V = I_X so that $V_{Th} = V_{ab} = 24$ V. If at test source is applied, I_{cb} through the 1 Ω resistor on the LHS Is I_X ; $I_{ac} = 2I_X$ and V_{ab} across the resistors Is $3I_X$, which equals the source voltage $2I_X$. It follows that $I_X = 0$ so that the trst source

1Ω

1Ω

sees a short circuit.

P4.1.28 Derive TEC looking into terminals 'ab' in Figure P4.1.28.

Solution: Initialize. All given values and the required V_{Th} are entered. The nodes are labeled. **Simplify.** The circuit is in a Simple enough form. **Deduce.** On open circuit, the currents are as shown. $I_{ac} = I_X$; $I_{cd} = 3I_X$; $I_{db} = 2I_X$; from KVL around the upper mesh, $20 = 20I_X$, so that $I_X = 1$ A. It

> follows that $V_{Th} = V_{ab} = 2 \times 10 + 20 = 40$ V. When a test source is applied, with the 20 V source set to zero, $I_{ac} = I_T + I_X$; $I_{cd} = I_T + 3I_X$; $I_{db} = I_T + 2I_X$; from KVL in the upper mesh, $5(I_T + I_X + I_T + 3I_X) =$ 0, which gives, $I_T = -2I_X$. It follows that $V_T = 2I_X$ $10(I_T + 2I_X) = 0$, so I_X that $R_{Th} = 0$.

Figure P4.1.28-1

P4.1.30 Determine V_0 in Figure P4.1.30 using TEC.

- **Solution: Initialize.** All given values and the required V_{Th} are entered. The nodes are labeled.
 - **Simplify.** The circuit is in a Simple enough form. **Deduce.** When the 4 Ω resistor is removed, I_X = 0, and the dependent source becomes an open circuit. It follows that $V_{Th} = 10$ V. 10 V. When the resistor is replaced by a short circuit, the circuit becomes as shown, where $I_x = I_{SC}$ and the dependent source becomes $5I_{SC}$. $I_{ac} = 2.5$ A. It follows from KCL that: $I_{SC} = 5I_{SC} +$ 2.5, which gives $I_{SC} = -2.5/4 = -5/8$ A, and $R_{Th} =$ $V_{Th}/I_{SC} = -80/5 = -16 \Omega$. Hence,

$$V_{\rm O} = \frac{4}{4-16} \times 10 = -\frac{10}{3} \, {\rm V}.$$

