Homework 4

P4.1.7 (a) Determine $V_{S R C}$ in Figure $P 4.1 .7$ by deriving TEC between terminals 'bc'. (b) Determine $I_{S R C}$, V_{x}, and V_{y}.
Solution: (a) $V_{T h}=V_{c d}-V_{b d}$, where node ' c ' is taken as positive with respect to node 'b' since current flows from node ' c ' to node 'b'. From voltage division, $V_{c d}=V_{S R C}(24 / 30)$,

Figure P4.1.7 and $V_{b d}=V_{S R C}(8 / 20)$. Hence,
$V_{T h}=V_{S R C}\left(\frac{4}{5}-\frac{2}{5}\right)=\frac{2}{5} V_{S R C}=$
$0.4 V_{S R C}$. With $V_{S R C}$ replaced by a short circuit, the resistance seen between terminals 'bc' is $8||12+6|| 24=4.8+4.8=$

Figure P4.1.7-1
9.6Ω. TEC becomes as shown, where the short circuit current given by: $\frac{0.4 V_{S R C}}{9.6}=5$. It follows that $V_{S R C}=$ 120 V .

Figure P4.1.7-2 'c'
(b) The resistance between nodes ' a ' and ' b ' and connected together in the given circuit is $12 \| 6=4 \Omega$, and the resistance between nodes ' b ' and ' c ' connected together and node is $8|\mid 24=6 \Omega$. The circuit can be redrawn as a voltage divider, as shown. It follows that $I_{S R C}=$ $120 /(4+6)=12 \mathrm{~A} ; V_{X}=120(4 / 10)=48 \mathrm{~V}$, and $120(6 / 10)=72 \mathrm{~V}$. As a check, the

Figure P4.1.7-3 current in the 6Ω resistor is $48 / 6=8 \mathrm{~A}$, and the current in the 24 Ω resistor is $72 / 24=3 \mathrm{~A}$, the difference being 5 A .

Figure P4.1.7-4

P4.1.11 Derive TEC looking into terminals 'ab' in Figure P4.1.11.

Solution: Initialize. All given values and the required $V_{T h}$ are entered. The nodes are labeled.
Simplify. The circuit is in a

Figure P4.1.11
Simple enough form.
Deduce. The 1 A source current flows through the 5Ω resistor, producing
a voltage drop of 5 V . The current

Figure P4.1.11-1 the through the upper 10Ω resistor is zero, so that current through the lower 10Ω resistor is zero, and the voltage across this resistor is zero. From KVL starting at node 'b and going CW: $-5+0+5-V_{T h}=0$, which gives $V_{T h}=0$.

To determine $R_{T h}$, the sources are set to zero. The 10Ω resistor on the left is short-circuited, leaving the remaining resistors in series. It follows that $R_{T h}=25 \Omega$.

P4.1.21 Connect a resistor R_{L} between terminals 'ab' in Figure P4.1.21 and show that the voltage $V_{a b}$ is independent of R_{L}. Deduce that TEC looking into terminals 'ab' is an ideal voltage source. Verify this deduction by

P4.1.21 determining $V_{T h}$ and $R_{T h}$ looking into terminals 'ab'.
Solution: $V_{c b}=I_{X} \vee, V_{a c}=I_{X} \mathrm{~V}, I_{a c}=I_{x} \mathrm{~A}$, and current through 12 V source is zero, it follows that $V_{c b}=I_{x} \mathrm{~V}=12 \mathrm{~V}, V_{a b}=$ $21_{X} \mathrm{~V}=24 \mathrm{~V}$, independently of R_{L}, Hence, $V_{T h}=24 V$, $R_{T h}=0$.

On opencircuit $V_{c b}=12 \mathrm{~V}=I_{X}$ so that $V_{T h}=V_{a b}=24 \mathrm{~V}$. If at test source is applied, $I_{c b}$ through the 1Ω resistor on the LHS Is $I_{x} ; I_{a c}=2 I_{x}$ and $V_{a b}$ across the resistors Is $3 I_{x}$, which equals the source voltage $2 I_{x}$. It follows that $I_{X}=0$ so that the trst source

sees a short circuit.
P4.1.28 Derive TEC looking into terminals 'ab' in Figure P4.1.28.
Solution: Initialize. All given values and the required $V_{T h}$ are entered. The nodes are labeled.
Simplify. The circuit is in a Simple enough form.
Deduce. On open circuit, the currents are as shown. $I_{a c}=I_{x} ; I_{c d}=3 I_{x} ; I_{d b}=2 I_{x}$; from KVL around the upper mesh, $20=20 I_{x}$, so that $I_{x}=1 \mathrm{~A}$. It

Figure P4.1.28
follows that $V_{T h}=V_{a b}=2 \times 10+20=40 \mathrm{~V}$.
When a test source is applied, with the 20 V source set to zero, $I_{a c}=I_{T}+I_{x} ; I_{c d}=I_{T}+3 I_{x} ; I_{d b}=I_{T}+2 I_{x}$;. from KVL in the upper mesh, $5\left(I_{T}+I_{X}+I_{T}+3 I_{x}\right)=$ 0 , which gives, $I_{T}=-2 I_{X}$. It follows that $V_{T}=$ $10\left(I_{T}+2 I_{X}\right)=0$, so $\quad \xrightarrow{I_{X}}$ that $R_{T h}=0$.

Figure P4.1.28-1

P4.1.30 Determine V_{O} in Figure P4.1.30 using TEC.
Solution: Initialize. All given values and the required $V_{T h}$ are entered. The nodes are labeled.

Simplify. The circuit is in a Simple enough form.
Deduce. When the 4Ω resistor is removed, I_{X} $=0$, and the dependent source becomes an open circuit. It follows that $V_{T h}=10 \mathrm{~V}$. When the resistor is replaced by a short circuit, the circuit becomes as shown, where $I_{x}=I_{S C}$ and the dependent source becomes $5 I_{S C}$. $I_{a c}=2.5 \mathrm{~A}$. It follows from KCL that: $I_{S C}=5 I_{S C}+$ 2.5 , which gives $I_{S C}=-2.5 / 4=-5 / 8 \mathrm{~A}$, and $R_{T h}=$ $V_{T h} / I_{S C}=-80 / 5=-16 \Omega$. Hence,
$V_{O}=\frac{4}{4-16} \times 10=-\frac{10}{3} \mathrm{~V}$.

Figure P4.1.30-3

